An Introduction To Combustion Concepts And Applications | eec57b95d1fbb325cf769161677f4fd

Novel Combustion Concepts for Sustainable Energy DevelopmentSoftware to Accompany An Introduction to CombustionSolutions Manual to Accompany an Introduction to CombustionCombustion

An Introduction To Combustion Concepts And Applications by Stephen R. Turns

This book is an introductory text on fundamental aspects of combustion including thermodynamics, heat and mass transfer and chemical kinetics which are used to systematically derive the basic concepts of combustion. Apart from the fundamental aspects, many of the emerging topics in the field like microscale combustion, combustion dynamics, oxy-fuel combustion and combustion diagnostics are also covered in the book.

This book explains how to apply concepts in chemical reaction engineering and transport phenomena to the design of catalytic combustion systems. Although there are many textbooks on the subject of chemical reaction engineering, catalytic combustion is mentioned either only briefly or not at all. The authors have chosen three examples where catalytic combustion is utilized as a primary combustion process and natural gas is used as a fuel - stationary gas turbines, process fluid heaters, and radiant heaters; these cover much of the area where research is currently most active. In each of these there are clear environmental benefits to be gained.


The book is structured to provide a comprehensive yet accessible introduction to combustion, covering both the fundamental and applied aspects of the subject. It is suitable for students and practitioners alike, whether they are new to the field or looking to deepen their understanding of combustion processes.

The book includes a variety of features to aid learning, such as:

- Over 200 worked examples and problems
- Numerous figures and diagrams
- End-of-chapter exercises
- Suggested readings

The book is an ideal resource for undergraduate and postgraduate students in mechanical, aerospace, chemical, and civil engineering, as well as for professionals working in the areas of combustion technology and related fields.

The book is written in a clear and concise manner, making it accessible to students and practitioners who may not have a background in chemistry or chemical engineering.

In summary, this book is an excellent introduction to the field of combustion, providing a comprehensive overview of the fundamental and applied aspects of the subject. It is highly recommended for anyone looking to gain a deeper understanding of combustion processes and their applications.
learning objectives, chapter overviews and summaries, historical perspectives, and numerous examples, questions and problems and lavish illustrations. Students are encouraged to use the National Institute of Science and Technology (NIST) online properties database. Bridging the gap between theory and application, this reference demonstrates the operational mechanisms, modeling, and simulation of equipment for the combustion and gasification of solid fuels. Solid Fuels Combustion and Gasification: Modeling, Simulation, and Equipment Operation clearly illustrates procedures to improve and optimize the deMost of the material covered in this book deals with the fundamentals of chemistry and physics of key processes and fundamental mechanisms for various combustion and combustion related phenomena in gaseous combustible mixture. It provides the reader with basic knowledge of burning processes and mechanisms of reaction wave propagation. The combustion of a gas mixture (flame, explosion, detonation) is necessarily accompanied by motion of the gas. The process of combustion is therefore not only a chemical phenomenon but also one of gas dynamics. The material selection focuses on the gas phase and with premixed gas combustion. Premixed gas combustion is of practical importance in engines, modern gas turbine and explosions, where the fuel and air are essentially premixed, and combustion occurs by the propagation of a front separating unburned mixture from fully burned mixture. Since premixed combustion is the most fundamental and potential for practical applications, the emphasis in the present work is be placed on regimes of premixed combustion. This text is intended for graduate students of different specialties, including physics, chemistry, mechanical engineering, computer science, mathematics and astrophysics. Although the basic theories of thermodynamics are adequately covered by a number of existing texts, there is little literature that addresses more advanced topics. In this comprehensive work the author redresses this balance, drawing on his twenty-five years of experience of teaching thermodynamics at undergraduate and postgraduate level, to produce a definitive text to cover thoroughly, advanced syllabuses. The book introduces the basic concepts which apply over the whole range of new technologies, considering: a new approach to cycles, enabling their irreversibility to be taken into account; a detailed study of combustion to show how the chemical energy in a fuel is converted into thermal energy and emissions; an analysis of fuel cells to give an understanding of the direct conversion of chemical energy to electrical power; a detailed study of property relationships to enable more sophisticated analyses to be made of both high and low temperature plant and irreversible thermodynamics, whose principles might hold a key to new ways of efficiently covering energy to power (e.g. solar energy, fuel cells). Worked examples are included in most of the chapters, followed by exercises with solutions. By developing thermodynamics from an explicitly equilibrium perspective, showing how all systems attempt to reach a state of equilibrium, and the effects of these states when they cannot, the result is an unparalleled insight into the more advanced considerations when converting any form of energy into power, that will prove invaluable to students and professional engineers of all disciplines. This book provides an introduction to basic thermodynamic engine cycle simulations, and provides a substantial set of results. Case studies that illustrate the use of engine cycle simulations are also provided. Introductory to Combustion is the leading combustion textbook for undergraduate and graduate students because of its easy-to-understand analyses of basic combustion concepts and its introduction of a wide variety of practical applications that motivate or relate to the various theoretical concepts. This is a text that is useful for junior/senior undergraduates or graduate students in mechanical engineering and practicing engineers. The third edition updates and adds topics related to protection of the environment, climate change, and energy use. Additionally, a new chapter is added on fuels due to the continued focus on conservation and energy independence” --Page 4 of cover. This book comprises research studies of novel work on combustion for sustainable energy development. It offers an insight into a few viable novel technologies for improved, efficient and sustainable utilization of combustion-based energy production using both fossil and bio fuels. Special emphasis is placed on micro-scale combustion systems that offer new challenges and opportunities. The book is divided into five sections, with chapters from 3-4 leading experts forming the core of each section. The book should prove useful to a variety of readers, including students, researchers, and professionals.